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A SINC-COLLOCATION METHOD FOR 
INITIAL VALUE PROBLEMS 

TIMOTHY S. CARLSON, JACK DOCKERY, AND JOHN LUND 

ABSTRACT. A collocation procedure is developed for the initial value problem 
u'(t) = f(t, u(t)), u(O) = 0, using the globally defined sinc basis functions. It 
is shown that this sinc procedure converges to' the solution at an exponential 
rate, i.e., O(M2 exp(-KvWM)) where , > 0 and 2M basis functions are used 
in the expansion. Problems on the domains R = (-oo, oo) and R+ = (0, oo) 
are used to illustrate the implementation and accuracy of the procedure. 

1. INTRODUCTION 

In this paper a collocation procedure for the numerical solution of the initial 
value problem 

(1.1) du(t) = f(t,u(t)), u(a) = 0 
dt 

is developed. A global approximation of the solution of (1.1), which is valid for 
t E [a, b), is obtained from the sinc functions. These functions are derived from the 
entire function 

sin(7rz) z 0 
sinc (z){ si(w) 1 0 

1, z=0, 

by translations. For each integer j and the mesh size h, the sinc basis functions are 
defined on 1R by 

f sin [()(x- jh)] 
(1.2) Sj(x) [("j)(x- jh)] 

1, x= jh. 

The sinc functions form an interpolatory set of functions, i.e., 

(1.3) S _(kh) 6(0) I If j=k, 
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Since the basis functions are defined on the whole real line, a convenient starting 
point is the construction of an approximation to the solution of the problem 

(1.4) dx = f(x,u(x)), lim u(x) = 0 
dx -__+00 

From (1.2), the basis functions satisfy the limit condition in (1.4), so that the 
assumed approximate solution 

M-i 

(1.5) Wm(X) = E wjSj(x), m= 2M, 
j=-M 

has the same property. The most direct method for the determination of the error 
requires the additional assumption 

(1.6) lim u(x) = 0, 
x-*_00 

since the assumed approximate solution (1.5) has this behavior. For this introduc- 
tory material it is assumed that the solution of (1.4) satisfies (1.6). This assumption, 
(1.6), will be removed in ?2 with the introduction of an auxiliary basis function in 
the expansion (1.5). 

A collocation scheme is defined by substituting (1.5) into (1.4) and evaluating 
the result at Xk = kh, k =-M, ... , M - 1. This gives the equation 

f f(x_ M, W-M) 

I 'i=f (n; w hr f(,t)= fx i;1 
(1.7) W MmW where x w 

f f(Xm-i IWM-1) 

X = [X-M,... , xm-i]', and w = [W-M,... , WM-1]t. The coefficient matrix in (1.7) 
is obtained from the explicit values for the derivative of the sinc basis functions at 
the nodes, 

(1.8) ~dSj (x) 18(1 1{ ____j 
if j=k 

k, dx XX kh 3 (1.8) d? 
IZ~=Xk=kh 

hk k - j if j 7+ k . 

Collecting the numbers l) -M < j,k _ M - 1, leads to the definition of the 
m x m skew-symmetric coefficient matrix in (1.7): 

0 -1 ~1 1 _ 1 
~ 0 -1 2 -3 2M-1 

2 ... 2M-2 

(1 - 9 ) I 1 = 2 1 0 -1. _ 1 
(1.9) I m = 2 2M-3 

1 1 .. 1 0 - 
2M-2 2M-3 1 0 - 

1 1 1 
- 2M-1 2M-2 2M-3 ... 1 0 mxm 

The procedure then is to solve the system (1.7) for the m x 1 vector of coefficients 
wY in (1.5). The discrete system in (1.7) can also be obtained via a Sinc-Galerkin 
procedure as outlined in [5,, pp. 136-138]. Furthermore, the sinc discretization of 
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differential equations, whether by Galerkin or collocation procedures, has been ad- 
dressed by a number of authors. In particular, Sinc-Collocation procedures for the 
eigenvalue problem have been addressed in [6, 3], and for the two-point boundary 
value problem in [8, 1] and [9]. These procedures, as well as an extensive summary 
of properties of sinc approximation,- can be found in [10]. 

It is shown in ?2 that if the function f (x, u(x)) is con-tinuously differentiable and 
u(x), the solution of (1.4), is sinc approximable then there exists a unique solution 
'wi to (2.7) so that 

(1.10) llu - w'll < KM2 exp(-,n M) 

where Ui = [U(X_M),..., u(xm-i)]'. Furthermore, the error between the approxi- 
mation defined by (1.5) and the solution u(x) to (1.4) satisfies 

(1.11) lU-WmI I < ?KM2 exp(- fM_) 

where K, K and 1s are positive constants. The notation 11 denotes the discrete or 
continuous two-norm. The proof of the estimate (1.11) depends on, among other 
things, the spectrum of Im, and in turn, on the Toeplitz structure of Im. This 
spectral study is also carried out in ?2. 

In the case that f(s, u) = g(s), a connection with the method of Stenger, [11], 
can be developed by integrating (1.4) from -oo to a node Xk, giving 

XSk 

U(Xk) = J g(s) ds . 

If the wj in (1.5) are replaced by g(jh) and the resulting sinc expansion of g(s) is 
substituted in the right-hand side, then the approximation 

M-1 Xk 

U(Xk) '(Xk)= E g(jh) SjS(s) ds 
j=-M -o 

results. Letting k vary from -M to M - 1 gives the matrix equation 

(1.12) u = hl(41)9, 

where the entries in the matrix I( are defined by the integrals 

jk1) = Sj(s) ds . 

It is shown in [10, p. 175] that the error in approximating u(x) by (1.5), where 
the coefficients are the components of u, satisfies the exponential convergence rate 
(1.10). Within this exponential accuracy these two methods are the same. This is 
numerically illustrated in each of the examples in ?2. 

The convergence proof which gives the order statement in (1.10) also applies,to 
problems on an interval [a, b) via the method of conformal mapping. The case of 
the mapping x = +(t) = ln(t), t E (0, oo), is addressed in ?3. The main motivation 
for restricting to the half-line is for implementation in the numerical solution of 
parabolic partial differential equations, where the convergence to an asymptotic 
state may be at an algebraic rate. 
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If the time domain is the half-line, the sinc basis functions in (1.2) are replaced 
by 

(1.13) Si o z0(t) sin[(7r/h)(O(t) - jh)] 
[(7r/h) (O(t) - -jh)] 

With this alteration, the approximation procedure is the same: assume an approx- 
imate solution of (1.1) of the form 

M-1 

(1.14) Wm(t) = E wjSj o +(t), m = 2M, 
j=-M 

substitute (1.14) into (1.1) and collocate at the nodes tk = 0-1(Xk), k = -M, -M+ 
1, ... , M - 1. This leads to the equation 

(1.15) hIl wV = -D f, f(t,) 
w 

where, given a function g(t) defined on the nodes tk, k = -M,... , M - 1, the no- 
tation D(g) denotes a 2M x 2M diagonal matrix with the kth diagonal entry given 
by g(tk). One of the implementation conveniences of this sinc procedure is that 
the only alteration to the numerical procedure given by (1.7) is the introduction of 
a diagonal matrix on the right-hand side of (1.15). This procedure has the same 
rate of convergence as the procedure for the real line. Another convenience in the 
implementation of the method is that, in the case of using Newton's method, the Ja- 
cobian update is simply a diagonal matrix evaluation. This method is implemented 
and illustrated in ?3. 

The method of this paper is not limited to the scalar initial value problem (1.1). 
Indeed, for the initial value problem 

y (t) = f (t y), y (t) Ez Rn , t > O, 
the development leading to (1.15) gives the n systems 

(1.16) =I Wj=D(, + (tvw I... n) j =1, 2,... , n, 

where fj denotes the jth component of f. As in the previous paragraph, the im- 
plementation of Newton's method for (1.16) is simplified, owing to the diagonal 
matrix evaluations in the Jacobian update. 

2. COLLOCATION ON R1 

In this section the convergence rate given in (1.10) is obtained for the problem 

(2.1) u'(x) = f(x,u(x)), lim u(x) = 0 
x-00 

The space of functions where the silnc approximant given by (1.5) yields an expo- 
nential discretization error is given in the following definition. 

Definition 2.1. The function u is in the space of 1(2(Dd), where 

Dd = {Z = X + iy: 0 < Iy < d} 
if u is analytic in 19d and satisfies 

d 

lu(x + iy)ldy = 0(jxja) x ix -- oo < ay < 1 
-d 
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and 

/ r 1/2 
JAf2(u, Dd _lim (jU Iu(X + iy)I2dx) 

y-d - oo 

oo 1/2 

+ 
(J 

Xu(x_iy)12dx) < o. 

There are many properties of the sinc expansion of functions in the class 7H2(Dd). 

A complete development is found in the text [10]. For the present paper the fol- 
lowing interpolation and quadrature theorems play a key role. 

Theorem 2.2. Interpolation. Assume that u E 7(2(Dd); then for all z E Dd 
00 

E(u, h)(z) u (z) - E u (kh)Sk(z) 
k=-oo 

(2.2) sin(7rz/h) f u(s-id-) 
27ri ]J_OO s - z - id-) sin(7r(s - id-)/h) 

(s - ~ ? u(s+id-) }ds 
(s - z + id-) sin(7r(s + id-)/h) 

and 

(2.3) IIE(u, h)II ? 
A2 

(u, Dd)=O (e-d/h) 

Corollary 2.3. Assume that u E 7H2(Dd) and there are positive constants oa and 
K1 such that 

(2.4) lu(x)l < K1 exp(-aoxl) x E R . 

If the mesh selection 

(2.5) h ( 

is made in the finite sine interpolant 

M-1 

(2.6) Um(X) = E U(Xj)s (X) 
j=-M 

to u(x), then the error is bounded by 

(2.7) lu - um ? K2M112 exp (-- rrda (M - 1)) 

Theorem 2.4. Quadrature. Assume that u E 2(2(Dd) is integrable; then 

00 c0o oo 

j E(u^, h)(x)dx = j u(x) dx - h E u(kh) 
-o0 -0 k=-oo 

frd+hid ) ei 7s/h _ _ _ _ _ _ _ _ d e / u(s + id-)e/h u(s - id-)eis/h 

2i 0 s in(7r(s + id-)/h) sin(w(s - id-)/h) 
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Furthermore, 

(2.8) ~ ~ ~ ? Af2 (U,D)e 7lrd/h (27rd/h) (2.8) 17|< (') -= 0: (e-2w/ 

Upon differentiating (2.2) one obtains the identity 
M-1 

u'(x) - E u(jh)S (x) = E u(jh)Sj(x) + u(Mh)S'(x) 
j=-M Iij>M 

(2.9) d [sin(7rx/h) [00 u(s-id-) 
dx 2,7ri J_OO - x - id-) sin(7r(s - id-)/h) 

u(s+id-) ds] 
(s -x + id-) sin(7r(s + id-)/h) 

where the two terms on the right-hand side are called the truncation and the dis- 
cretization errors, respectively. If the function u(x) lies in 2 (Dd), then it is shown 
in [7, Eq. # 4.3] that 

d [sin(lrx/h) J s_ u(s-id-) 
dx 27ri -O (s -x-id-) sin(7r(s - id-)/h) 

(2.10) ( u(s + id-) dsi 
(s -x + id-) sin(7r(s + id-)/h) | 

< h3 ex(-7rd/h). 

A short calculation gives the bound 

,Sj,(x), = 
d 

j(x '|'27 dx - 2h' 

Combining this inequality with (2.4) gives the following bound on the truncation 
error: 
(2.11) 

E u(jh)S(x) + u(Mh)Sj(x) < E lu(jh)Sj(x) + u(Mh)Sj(x)j 
Ii>M IjI>M 

00 

< 5 E lu(jh)l 

j=M 

- h E lexp (- ajh)I 

h irKl exp( -ah) exp(-ay(M - 1)h) 
h k -exp(-ayh) 

irKl 
< h2 exp(-a(M - 1)h) 

where the inequality 

exp(-ah) < 1 
1- exp(-ah) - ah 
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yields the first inequality in the last line of (2.11). 
The initial value problem (2.1) gives U'(Xk) = f (Xk, U(Xk)), so that, evaluating 

(2.9) at the nodes, and using the inequalities in (2.10) and (2.11), one can show 
that the kth component of 

(2.12) Nm (u) = hI ul + f(x,u) 

is bounded by 

Nm(Uk) I < h exp(-7rd/h) + 4 exp-(a(M - 1)h) 

< [K3 M + K4M] exp (- v7rdax(M-1)) 

where the mesh selection h in (2.5) was substituted in the first inequality to obtain 
the second inequality. Therefore, the vector Nm (iU), in the two-norm, is bounded 
by 

M-1 1/2 

||Nm(U)I = (E INm(Uk) 12 
k=-M 

(2.13) < 2M max INm(Uk)I 
-M<k<M-1 

< K5M32 exp (-V7rda(M - 1)) 

Rom (2.12) and the inequality (2.13), an estimate of the error in the approx- 
imation requires a bound on the norm of the inverse of the matrix Im, m = 2M. 
It has been numerically shown that, this matrix is invertible for all M < 250 and 
the sixth column of Table 2 in Example 2.10 numerically supports this invertibility. 
These numerics, as well as analytic evidence supporting the invertibility of I2M, 
motivates the assumption: 

(2.14) I(Im )-'l < m=2M, M> 1. 

Theorem 2.5. Assume that the function u is in 2(2(Dd) and satisfies (2.4). Fur- 
ther, assume that the function f (x, u) is continuously differentiable and that fu = 
a9f/a9u is Lipschitz continuous with Lipschitz constant KL and that (2.14) holds. 
Then in a sufficiently small ball about u(x) the function 

M-i 

(2.15) Wm (x) = E3 wj Sj (x) 
j=-M 

where the coefficients are determined by solving the equation 

(2.16) NmQ(w) hI7p +f(5, w) = O 

satisfies 

(2.17) llwm - ull < K6M2 exp (- irda(M-1)) 

If ui = (u(x_M),... , u(xM-l))t is the vector of coefficients in the sinc expansion 
(2.6), then the equality of function and vector norms, 

||Wm -UmH1 = 1wu- 'I, 
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follows from the orthogonality of the sinc basis, 
00 

J Si(X)Sk(X) = 0, j 7 k. 

Hence, the triangle inequality takes the form 

||Wm - U< ?|Wm - UmI + |Um - uH 

(2.18) = 'I-Iu| + Hlum-ull 

? uLW-u'7 + K2M1/2 exp (-, i7rdca(M -1)) 

where the last inequality follows from (2.7). It remains to bound the error in the 
coefficients IIw - u'lI, and this is addressed in the following two lemmas. 

Lemma 2.6. Assume that the function u is in X (Dd) and satisfies (2.4). Further, 
assume that the function f (x, u) is continuously differentiable and that fu = a9f/a3u 
is Lipschitz continuous with Lipschitz constant KL and that (2.14). Then in a 
sufficiently small ball about u? there is a unique solution w' to (2.16) which satisfies 
the inequality 

(2.19) w-ull < KsM2 exp (- 7rda(M - 1)) 

The idea of the proof is to use the Contraction Mapping Principle. This argument 
requires an estimate on the norm of the inverse of the matrix 

(2.20) Lm (iu)-h I'm + 'Df (x, ) 
h m u(_11i) 

which, in turn, depends on the norm of the inverse of the matrix Im. The assumed 
invertibility of the matrix I'M m = 2M, and the estimate in (2.14) will be motivated 
following a discussion of the Toeplitz structure of the matrix Im. Assuming the 
estimate in (2.14), the following lemma is needed in the proof of Lemma 2.6. 

Lemma 2.7. Let ie1 be the purely imaginary eigenvalue of Im, m = 2M, with 
smallest positive imaginary part ei. Let D be an arbitrary m x m real diagonal 
matrix. Then 

(2.21) H(Im'+D>1H < 1 = DI):I 'H 

Proof. Since I' has real entries and is skew-symmetric, its eigenvalues are purely 
imaginary. To see the first inequality, let v' be a unit eigenvector of Im corresponding 
to the eigenvalue ie1. For an arbitrary unit vector z' E C2M one has 

111M + II 2 _ MaX ((Ilm + D) -(Ilm + D)) 
jjI~i12=1 

z 

>( (Im' + D) v,7 (Im' + D)V0) 

= (iev- + Evh, ie7v + Eh) 

= (ie i-H+ EW)* (ie, V+ Eh) 

= ve *2V *'v+ (iel6)*Evh + ielv' *D*v? +v*ED*Evh 

= ei 2+[(iel)* + iei]v J*Tvv*D2i> e 12el 

since the entries in D and e1 are real. This implies (2.21) which completes the proof 
of Lemma 2.7. E 
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Proof of Lemma 2.6. Let BrQ(U) denote a ball of radius r in R23M about u'. Consider 
the fixed point problem 

w =Fm (w-) I 

Fm ( w-) W` w- L 
- 

[A Nm ( W-) 

Lemma 2.7 shows that the function L-1 [iu] in (2.20) exists and is bounded by 

(2.22) I~Ltm[iii1 = KI|| n [ D(fA(x`i))] < h(2M) ?K6M, 

where the mesh size in (2.5) yields the last inequality. It follows that a fixed point 
of Fm gives a solution of (2.16). Let vi E Br (U); then the calculation 

(2.23) 

Fm(v) -7 = lv-u-L [il]Nm(6)H 

V 
` 

-Lm [i] [Nm(t) + (ji dNm (tV+ (1 -t)i) dt)] 

=` li-U`- Lm [] [Nm ( U) + (,;D-(Nm)(tV`+ (1-,t)U`)dt) (07-i!)]1 

< flLr [u]Nm (U)H1 

+ IIL4i[iI] [j {Lm [A]- Di (Nm) (tv + (1 -t)i)I dt] (v`-)II 

follows from the Taylor polynomial for the function Nm and the triangle inequality. 
The first term following the inequality sign in (2.23) can be bounded by the product 
of the right-hand sides of (2.13) and (2.22). 

Consider bounding the second term following the inequality sign on the right- 
hand side of (2.23). Using the assumed Lipschitz continuity of fu yields 

fIlL-1[i7] [ji {Lm[il] - Df-(Nm)(tV+ (1 -t)i7)}dt] (V`- t)I 

(2 .24) = | Lm [i] [jnD ( f() 1)-fb(5,t'+J(i-t)'i)) dt] (x-ii1 

< ILml['U]112 KLr2. 

Substituting (2.24) in the right-hand side of (2.23) leads to the inequality 

IlFm(Q) - U` < IIL d]H ( ,Nmd)II + KLr2) 

? K6J [(K5 M3/2) exp (-vf7rda(M -1)) + KLr2] 

? K7M2 exp (- i7rda(M-1)) + MKLr2 , 

where (2.13) and (2.22) yield the second inequality. The quadratic inequality 

K7M2 exp (-7rda(M .-1)) + MKLr2 < r 

is satisfied for all r e (ro, rl), where 

(2.25) ro = O(M2 exp ( rda(M-1)))< r- ( 1 O~~~~~k 
P\~~~~~~~N/_ 
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since M2 exp (- rd(M-1)) -- 0 as M -4 oo. This shows that Fm maps Br(ii) 

into itself. 
Next it is shown that on Br(ui), for r sufficiently small, Fm is a contraction 

mapping. Let w', V' Br(i7); then 

(2.26) 

Fm (v) Fm((W-)I = |- W` - L 1[it] (Nm (V) - Nm(i)) 1 

= ILtm[ii] [Lm[,Z] (vi-w i*) - (Nm(f) -Nm(Wi))] I 

<11L- [8]flj 1D {fu(,)}(vw- x,v-(,w] 

= L7[L]I 11f DE{fx, tu f+ (1-t)u)-fx, tv + ((1-t)wi)} dt 
(v--w-) 

<2rKL JIL-1 [il] 11 11 V -w W'1 

where KL is a Lipschitz constant for fu. By choosing 

r - r+ < 1 

2KL 2K7 M 

it follows from the inequalities in (2.26) and (2.22) that Fm is a contractive map 
on Br(it), so that Fm has a unique fixed point. Furthermore, from (2.25), one can 
choose 

r =O (M2 exp a7rd(M-1))) 

This completes the proof of Lemma 2.6. D 

In order to provide support for the assumed invertibility of the matrix II) m - 

2M, in (1.9) it is convenient to use the theorem of Toeplitz [4, p. 63]. 

Theorem 2.8. Toeplitz. Denote the Fourier coefficients of the real-valued func- 
tionfCL(-rr,rr) by 

fir 
fn =21 f(x) exp(-inx) dx, n = 0, ?1, ?2,... 

27r _T 

and define the m x m Toeplitz matrix of the function f by 

fo fi f2 ... fm-i 
f-i fo fi *.. fm-2 

(2.27) Cm(f)- _ f-2 f-i fo . fm-3 

f-m+2 f f-1 fo fi 
f-m+1 ... f-2$ f-I fo mxm 

Denote the real eigenvalues of the Hermitian matrix Cm(f) in increasing order by 
{eT}IT1. If the function f has a minimum Ml and maximum Mu on [-7r, rr], then 
for every m, 

Ml < elm < e2m < ... <-em < Mu 
Further, if Cm (g) is the Toeplitz matrix of the real-valued function g c L(-ir, rr) 
and g(x) < f (x), then 

(2.28) {} a t em j = 1C2()... 

where {cTI}jm= are the eigenvalues of Cm(g) . 
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The role of the Toeplitz theorem in the present development is as follows. The 
Fourier coefficients of the function f (x) = x are 

fI r 

fn 1 2 f(x) exp(-inx) dx 
2ir Jr 

=2I x exp(-inx) dx 

0 if n = , 
l-cos (n) if n =4 O, 

0 if n zz0, n Qn if n-AO, 

so that upon comparing these coefficients with the entries of the matrix I'm m 
2M, in (1.9) shows that the Toeplitz matrix C2M(f) = i2M. The eigenvalues of 
the real skew-symmetric matrix I2M occur in conjugate pairs {?iem}M I and the 
nonnegative real numbers, em, satisfy the inequality 

(2.29) -7r < -em < ... < -em < em < .. < em < r 

To see that zero is not in the above list, consider the function 

e-ix eix 
g(x) = sin(x) - 2-i + e 

2i ?2i' 

whose Fourier coefficients are given by g?1 = i?1 , and gn = if n i1, so that 
the Toeplitz matrix Cm(g) is given by the matrix 

0 -1 0 0 ... 0 
1 0 -1 0 ... 0 

1 0 1 0 -1 ... 0 
(2.30) Cm(g) 2. 

0 0 ... 1 0 -1 

00L0*** 1 0 - mxm 

The eigenvalues of the real skew-symmetric matrix i0m(g) also occur in conjugate 
pairs {?icp}LM1, m = 2M, and the real numbers, cpm, are given by the explicit 
formula 

CPM Cos ([2M +1 ]) v p = 1, 2, ... .,M, 

and are ordered by 

(2.31) 0 < cm < cm < ... < rm <I 

The inequality g(x) = sin(x) < f(x) = x is satisfied on the interval [0, ir]. From 
this one would expect that 

m (2.32) cim < e, j-= 1, ...,M, 

as in Theorem 2.8, i.e., the positive part of the spectrum is monotonically ordered. 
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However, a proof of this last statement for general odd functions is not possible 
as the following example shows. Consider the 4 x 4 Toeplitz matrix generated by 
the function -f(x) =-X: 

C4(-f)=-iI4 2 1 -< 2 3 

O-1 - 1 0 

C4(hf) = 2i4 1 
2 1 - 

21 1 w0_ 4x4 

and the 4 x 4 Toeplitz matrix generated by h(x) = sin(x) + sin(2x): 

The nonnegative eigenvalues of C4(-f) are C4 V= 3/6 and c4 2 /iiX-/2 whereas 
the nonnegative eigenvalues C4(h) are e4 = 0 and e4 = /5/2 even though the 
inequality -x < sin(x) + sin(2x) holds on [0, ir]. 

It has been shown that the inequality (2.32) holds for g(x) = sin(x) and f (x) = x 
for all corresponding matrices up to size 500 x 500. Assuming this holds, it follows 
that 

(2.33) min e =e > cm = cos M >2 +_- 

Hence, combining (2.21) and (2.33), one finds 

1 1 | IM)1|l= _ 

In view of the upper bound in (2.29) for the eigenvalues of the matrix I2M the 
spectral condition number of this matrix is 

'(I2M) = |II2MII II(I2M) 1- em <_( M__ )7 ' 

The following example clearly exposes the various parameter selections yielding 
the mesh selection h in (2.5) and also illustrates the close connection of this method 
with the method found in [10, ?7.1]. 

Example 2.9. The function 

(2.34) u(z)= 1 
cosh(irz) 

is analytic in a strip of width one (the pole closest to R1' of u(z) occurs at z = 

so that the domain of analyticity of this function is Di. Further, this function 
satisfies the inequality (2.4) with K1 = 2 and ae = ir and is the unique solution to 
the problem 

(2.35) u'(x) = -7rsinh(7rx)[u(x)]2, lim u(x) = 0 
X+-00 

The function in (2.34) satisfies the auxiliary assumption lim u(x) = 0 so that 

the Theorem 2.5 applies. Hence, setting d = 1/2 and ae = 7r leads to the mesh size 
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h /(2M). The coefficients {wj}wM-7M in (2.15) are obtained by solving the 
system 

(2.36) w -g, where g(x) o sh2((rx) 

and the second column in Table 1 displays the error between the solution at the 
nodes and the coefficients, 

(2.37) ERR(M) - ll' 

which, owing to the factor M2 in (2.19) and the inequality in (2.18), represents the 
dominant error contribution to IIu - Wm . 

TABLE 1. Errors in the computed solution of (2.35) 

M ERR(M) ERR(M) 7) 
4 7.9514e-02 6.5952e-02 8.29e-01 
8 1.6165e-02 1.3654e-02 8.45e-01 
16 1.6267e-03 1.4151e-03 8.70e-01 
32 5.6978e-05 5.1164e-05 8.98e-01 
64 4.3819e-07 4.0450e-07 9.23e-01 
128 3.9179e-10 3.6964e-10 9.43e-01 

Instead of the matrix inversion in (2.36), an alternative procedure [10, ?7.1] 
begins by rewriting (2.36) as the indefinite integral 

(2.38) U(Xk) g(x)dx, k =-M,-M+ 1,... ,M-1 . 

Now replace g(x) in (2.38) by the finite sinc expansion 

M-1 

(2.39) g(x) E g( jh)Sj (x), 
j=-M 

integrate this expression from -oo to the node Xk, and define the approximation 
M-1 kh M-1 

(2.40) Wk g(jh) / Sj(x)dx = E h8> l)g(jh) 
j=-M -o j=-M 

The numbers 8k 1) take the form 

j-k kii({id (2.41) -jk 1) = 1 j sin [(h)(x jh)] J sin(7ry) 

It is shown in [10, p. 719] that the error in approximating u(xk) by the expression 

in (2.40) is, in supremum norm, of order C (M1/2 exp (-Vrrda(M - 1)) ). Hence, 

to exponential order, this is the same as the bound on the right-hand side of (2.17). 
By letting k -M, ... ., 0,.. , M - 1, the equations in (2.40) admit the matrix 
form 

(2.42) w=i h ) _ h I- ). 
Ljkmxm 

9 m 9 
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These nurmbers are calculated and the error ERR(M) =llw - u'll is compared with 
the error ERR(M) in (2.37). The ratios 

(2.43) K ERR(M) 

are displayed in the final column of Table 1. 

The development up to this point has assumed that the solution of the initial 
value problem (2.1) vanishes at infinity. This limit assumption is removed by ap- 
pending an auxiliary basis function to the sinc expansion in (2.15). Define the basis 
function 

w(x) ex + ex 

and form the augmented approximate sinc solution 
M-2 

(2.44) W (X) = Wm( (X) + c w(x) = cjSj(x) + c w(X). 
j=-M 

The additional basis function w(x) satisfies 

lim w(x) = lim e f 1, x-40o, 
x-+?oo xo->?o ex + e-x , x -X -00 

and is included in the expansion to allow nonzero boundary values of u, u(oo) = uc. 
The change of variable 

(2.45) v(x) = u(x) - uow(x) 

transforms the problem 

(2.46) u'(x) =f(x,u(x)), lim u(x)=O, 
x-> 00 

to the problem 

(2.47) v'(x) = f(x, v(x) + u00w(x)) - u'0w'(x),, lim v(x) = 0 . 

If u,o is known, then the method defined by (2.16) determines the twjm-._ in 
the expansion 

M-1 

Wm(X) = E wjSi(X) 
j=-M 

and the result of Theorem 2.5 applies to the approximation of v(x) in (2.47) by 
wm(x). However, if u0o is unknown, one approach which preserves the error of 
Theorem 2.5 is to replace this unknown by coo in (2.45) and use the Quadrature 
Theorem 2.4 to write 

v(oo) = 0OJ [f(x, v(x) + uoow(x)) - uoow(x)] ds 
-00 

j [f(x, wm-i(x) + c0ow(x)) - c0ow(x)] ds 
-00 

M-2 

h E [f (Xk, Ck + CooW(Xk)) - Co0W(Xk)] 
k=-M 



A SINC-COLLOCATION METHOD FOR INITIAL VALUE PROBLEMS 229 

Add this equation to the solution procedure to obtain the approximate value for c". 
Since the error in the quadrature theorem is the square of the error of interpolation, 
this introduces no more error than the error in the method defined by (2.16). 

Incorporating the above side condition in the approximate method to determine 
the coefficients in (2.44) is less convenient to implement than the following ap- 
proach. Directly substitute the augmented approximate sinc solution (2.44) into 
the differential equation (2.46) and collocate this expansion at the m = 2M nodes 
Xk, k =-M, ... , 0, ... M - 1. This leads to the bordered matrix system 

(2.48) A` = [ m n- a/ c =-f (z Tz 

In (2.48) the vector c= [C-M.Oi ... C CM-2,Co] t contains the coefficients in 
(2.44), and the approximate values to the solution 

W = [W_M) .. I Wov I .. Wm _M2I WOO] 

are obtained from the transformation 

(2.49) wa =T77c 

where the matrix T, is defined by 

1 0.. 0 W-M 
0 1 0 W-M+1 

(2.50) TW= 0 0 1. 
0 0 1 S - 
0 0... 1 WM-2 

L0 0... 0 Wm1i 

Since the matrix T,, has the explicit inverse 

I 1 ... 0 W- 
WM-1 

0 1 *v O _-M+1 

T-1 0 0 1 ... 1 
(2.51) T51- 0 0 1 

0 0 WM-2 
WM-1 

0 0... 0 1 
WM -1 

one may regard either the vector c5 or w5 a as the unknown in (2.49). 
The system in (2.48) is solved for the coefficients by applying Newton's method 

to the function 

(2.52) Nm(c =-A--#+ f (x,T 
If the matrix A satisfies the conclusion of Lemma 2.7, then Theorem 2.5 applies 
to the function Nm so that the rate of convergence of the present method is also 
given by (2.17). Although an argument implying the validity of Lemma 2.7 for the 
matrix A does not seem to be an immediate corollary of the argument implying 
its validity for Im, the numerical results displayed in the next example provide 
compelling evidence for the validity of Lemma 2.7 with Im replaced by the matrix 
A in (2.52). 
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Example 2.10. In this example the function 

u() exp (x) 
exp(x) + 1 

is a solution to 

(2.53) u'(x) -[u(x)]2 + g(x) , lim u(x) = 0 
-__+00 

provided g(x) = u(x). The coefficients c5 in the approximation wa(x) are found by 
solving (2.52), which takes the form 

NmQg) = Ac + ?D ((TWC, 2) 0. 

The matrix D ((T, Cl 2) is the diagonal matrix whose kth diagonal entry is given 
by the square of the kth component of the vector T,,C. This system is solved 
by Newton's method, and the number of iterations n used in the calculations is 
recorded in Table 2. As in the last example, the error of the method, 

(2.54) ERR(M) - II u -WIaI v 

is displayed in the third column of Table 2. The method of [10] discussed in the 
previous example was also applied and the ratio of the errors defined in (2.43) are 
recorded in the fifth column of Table 2. 

TABLE 2. Errors in the computed solution of (2.51) 

M| n |ERR(M) |ERR(M) | 4 R((I1l)-1) |R(A-1)| 
4 6 1.2284e-01 1.1243e-02 9.15e-02 5.19e-01 6.71e-01 
8 6 2.5326e-02 3.0833e-03 1.2le-01 5.13e-01 6.02e-01 
16 7 2.6765e-03 3.7675e-04 1.41e-01 5.09e-01 5.51e-01 
32 8 9.7673e-05 1.5030e-05 1.54e-01 5.06e-01 5.23e-01 
64 9 7.7053e-07 1.2637e-07 1.64e-01 5.03e-01 5.1le-01 
128 10 6.9836e-10 1.2016e-10 1.72e-01 5.02e-01 5.05e-01 

To amplify the remarks preceding the opening of this example, the final two 
columns in Table 2 compare the ratios 

R((Im )--) = ( _) 
_ 1I and R(A1) = II2M_ 
2M 2M 

For this example the rank-one change from the matrix Il to A has not, in mag- 
nitude, altered the norm in any significant manner. Indeed, since the matrix A in 
(2.52) is independent of the problem (it only depends on the choice of w(x)), this 
comparison remains the same for other initial value problems. 

3. COLLOCATION ONR+ 

The procedure and the proof of convergence in the last section applies to the 
problem 

(3.1) u'(t) f(t, u(t)), u(0) = 0, 

via the method of conformal mapping. Specifically, the map 

z = +(w) = ln(w), w = eZ, 
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is a conformal equivalence of the strip Dd in Definition 2.1 onto the wedge 

(3.2) Dw = {w E C: w = reio 101 < d < ?r/2} . 

The analogue of the space j2(Dd) for this domain is contained in the following 
definition. 

Definition 3.1. The function u(z) is in the space J22(Dw) if u is analytic in Dw 
and satisfies 

d 

J F(re' ) Jr d -0=(iln(r)l) r- 0+,oo, O a1 
-d 

and 

lim J IF(w)dwl = li J F(peid)idp <0.x 

A sinc approximate solution of (3.1) takes the form 
M-1 

(3.3) Wm(t) = E w Si o +(t), m=2M, 
j=-M 

where the basis functions for the half-line are defined by the composition 

(3.4) Si o q(t) = sin[(Vr/h)?b(t) - jh] 
[(ir/h)o(t) - jh] 

With this alteration, the derivation of the approximation procedure is the same as 
it was in ?2. Substitute wm into (3.1) and evaluate at the m 2M sinc nodes 

-1(xk) tk = exp(kh), k -M,... ., M - 1, to arrive at the discrete system 

(3 5) hIl' w = -D f/ f(t, w). h m 4} 
As mentioned in the Introduction, the only difference between this matrix equation 
and the one presented in (2.16) of ?2 is the multiplicative diagonal matrix DQ( ?). 

The importance of the class of analytic functions in Definition 3.1 lies in the fact 
that if 4/'(w)u(w) E H2 (DW), and if there are positive constants a and K1 so that 

(3.6) Iu(t)l <K1 0ta t > , 

then the sinc interpolant to u(t) also satisfies (2.7) and (2.9). Since U'(tk) 
f (tk, U(tk)), it again follows that the error in the kth component of the function 

Nm (i) =1 Imu + 'D u) 

is bounded by 

(3.7) INm (uk) I < exp(-7rd/h) + K4exp (-a(M - 1)h). 
-h h2 

Finally, the mesh selection 

hrd 
a(M.-1) 

when substituted into the right-hand side of (3.7), leads to the bound in (2.13) for 
IINm(9)II in (3.7). 
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Theorem 3.2. Assume that the function q'(w)u(w) is in 7H(2(Dw) and satisfies 
(3.6). Further, assume that the function f (t, u) is continuously differentiable and 
that fu = af/au is Lipschitz continuous with Lipschitz constant KL. Then in 
a sufficiently small ball about u(t) there is a unique vector wz which provides the 
coefficients for wm (t) in (3.3) and 

(3.8) llwm - ull < KM2 exp ( irda(M - 1)) 

The proof of this again follows from Lemma 2.6 and Lemma 2.7, both of which 
remain valid with the stated assumptions and owing to the fact that the coefficient 
matrix in (3.5) remains the same as in ?2. 

Since the functions Sj o +(t) have the property lim Sj o +(t) 0 O, the assumed 

approximate wm(t) in (3.3) has the same property so that the method can only be 
expected to approximate initial value problems with this added assumption. This 
limit assumption is removed by appending an auxiliary basis function to the sinc 
expansion in (3.3) much as in the last section, and is discussed in the next example. 

Example 3.3. Let -y be a real parameter in the family of initial value problems 

(3.9) U'(t) = f(t) = (1 - -yt) exp(-t) , t > 0 , u(0) = 0 

The solution is given by 

u(t) = 1 - exp(-t) + -y (exp(-t) + t exp(-t) - 1) 

and satisfies 

lim u(t) = U"o = 1 - '. 
t-0oo 

This example serves to illustrate that the procedure not only tracks a nonzero limit 
value ('y # 1), but also that the method still tracks a zero steady state (-y = 1). 

As discussed in the lines following (2.47), add the additional basis function 

(3.10) w(t) =t 

to the sinc approximate (3.3) to obtain the augmented sinc approximant 
M-2 

(3.11) wa(t) = E cjSj o q/(t) + coow(t) 
j=-M 

Substitute (3.11) into (3.1) and evaluate this result at the sinc nodes tk = exp(kh), 
k -M, -M+ 1 ... , M - 1. This yields the matrix system 

(3.12) A' =-1h ( 

where 

(3.13) A= [I)_l?, 
[h mxm 

The approximation to the solution Wa (tk) = Ck + CoofW(tk) U(tk) is obtained from 
the transformation Wa = T,,C'. The coefficients Ck, k = -M,... , M - 2, and co, 
are assembled in the m x 1 vector c' and the matrix 

T= [Imxm-il 1 ] 
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is the same as in (2.50) with w replaced by (3.10). It is important that the sys- 
tem (3.12) calculates the limit value when -y = 1, namely zero. For purposes of 
illustration, the system (3.5), without the augmented basis function has also been 
computed and the results of solving that system for the coefficients in (3.3) are 
given in Table 3 as well. 

TABLE 3. Errors in the augmented and non-augmented approxi- 
mation for the solution of (3.9) with -y = 1 

M la _21 -II - 

4 1.4419e-01 8.1682e-02 
8 3.1887e-02 1.7142e-02 
16 6.4556e-03 3.2712e-03 
32 3.4783e-05 2.9180e-05 
64 2.3802e-06 1.2030e-06 
128 2.0902e-09 1.0572e-09 

If the bound on the inverse of A in (3.13) satisfies the conclusion of Lemma 2.7, 
then the results displayed in the above table are not specific to this example. 

In the general case, the discretization of the problem (3.1) takes the form 

(3.14) AC= -D (?)f (t, Tw5,, 

from which the coefficients in (3.11) are calculated and the approximation to the 
solution at the nodes is given by Wa(tk) = Ck + CooW(tk). In each of the following 
examples, Newton's method is applied to the function 

(3.15) Nm (c = A c- + D (?,) 
I 

tT6,,0 . 

The vector cI ? = 1 initializes the Newton iteration 
(3.16) cR n+l = n + 

' n 

where the update 6 n is given by 

(3.17) J7(Nm)(C )S n = Nm(c'T) 

and the Jacobian of (3.15) is 

(3.18) (Nm)(c) = A+D (+D ) D (a(u,T c) TW. 

Note that besides the exponential rate of convergence given by (3.8), the computa- 
tion involved for the Jacobian of the nonlinear system is straightforward. In fact, 
from (3.18), the update of the Jacobian is simply a diagonal evaluation. 

Example 3.4. The initial value problem 

(u2 + 4u + 1I 
(3.19) U'(t) = (t, u) = t>I O (0)=0, 2u +4 ) t0 ()0 

has the solution 

'u(t)=2- 33+exp(-t), 
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which tends to 2 - V3 at the exponential rate 

(3.20) u(t) = (2 - v3i) - O(exp(-t)) as t -* oo 

The results in Table 4 display the number of Newton steps, n, in (3.16) and the 
two-norm error 

ERR(M) = Ilwda - 11 

TABLE 4. Error in the computed solution of (3.19) 

M n ERR(M) 
4 4 2.2603e-03 
8 5 2.9802e-03 
16 5 2.6584e-04 
32 5 7.6291e-06 
64 6 4.2556e-08 
128 6 2.0623e-12 

A particularly useful application of the present procedure is to those initial value 
problems where the convergence to the asymptotic state is only of an algebraic rate. 
For example, an autonomous differential equation that has a nonhyperbolic rest 
point. The sinc approximation to such solutions also' assumes algebraic decay at 
infinity, so that the convergence estimate in (3.8) is maintained. This is illustrated 
in the following example. 

Example 3.5. For small positive parameters f the problem 

(3.21) u'(t) =fi(1-u )2, t > 0, u(0) =0, 

has the solution 

u(t) =,t+ I 
= 

3 
1 

I 
B 

The asymptotic behavior 

(3.22) u(t)-1 t as t >oo 

shows the algebraic rate of approach to the asympototic state. In particular, for 
small f, this rate is is quite slow compared to the rate of approach in the previous 
example, given by (3.20). 

In Table 5 the error in the calculated solution of (3.21) is displayed for several 
values of f. As one reads the table from left to right (decreasing p3), there are fewer 
Newton steps computed to achieve the error, owing to the decreased accuracy in 
the computed solution. The reason for this decrease in accuracy can be traced to 
the truncation error, which is bounded by the second term on the right-hand side 
of (3.7). For t large, the inequality in (3.6) implies 

u(t) - 1 K1- . 
to: 

As seen from (3.22), K1 - 1/fl. Hence, as f is decreasing, the constant K1 is 
increasing. In these cases of an algebraic rate of approach to the asymptotic state, 



A SINC-COLLOCATION METHOD FOR INITIAL VALUE PROBLEMS 235 

TABLE 5. Error in the computed solution of (3.21) 

ERR(M) ERR(M) ERR(M) 
M n fl=.1 n 03=.01 n 3=.001 
4 6 1.3231e-01 4 2.8747e-01 3 4.9698e-02 
8 9 1.9510e-02 6 2.0021e-01 4 2.6669e-01 
16 13 1.0601e-03 10 1.7213e-02 7 1.5763e-01 
32 18 1.8684e-05 15 3.7626e-04 12 4.3506e-03 
64 26 5.8273e-08 23 1.8770e-06 20 2.1567e-05 
128 37 1.1437e-11 34 1.1200e-09 31 1.3027e-08 

a simple change in the definition of the mesh selection (3.9) yields an accuracy 
bounded by exp(-(6A M)) where 6 < a. This alternative mesh selection, which 
defines a mesh reallocation, is also used, for example in boundary layer problems, 
and forms a portion of [2]. 
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